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Abstract. In this paper we discuss the application of a space-time discontinuous Galerkin

finite element method for convection-diffusion problems to the simulation of wet-chemical

etching of microstructures. In the space-time DG method no distinction is made in the

discretization between the space and time variables and discontinuous basis functions are

used both in space and time. This approach results in an efficient numerical technique

to deal with time-dependent flow domains as occur in wet-chemical etching, while main-

taining a fully conservative discretization. The method offers great flexibility in mesh

adaptation and special attention is given to the generation of an initial solution and

mesh when there is no etching cavity yet. Numerical simulations of the etching of a

two-dimensional slit are discussed for different regimes, namely diffusion-controlled and

convection-dominated etching. These results show good agreement with analytical results

in the diffusion-controlled regime. Using a simple model for the fluid velocity the typi-

cal asymmetric etching cavities are obtained in the convection dominated regime and the

results agree qualitatively well with those obtained from full Navier-Stokes simulations.
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1 INTRODUCTION

Etching is a production technique which is widely used in high-technology. Examples
are the fabrication of semi-conductors, microsystems and transducers. Etching is also
important for the mass production of complicated objects with small features, such as the
production of shadow masks in color TV’s and printed circuit boards in electronics. In
all these cases one uses a key benefit of etching, namely that the process is independent
of the complexity of the design. This makes etching ideally suited for the production of
complicated small objects. In this paper we focus on wet-chemical etching, which is an
important etching technique and widely used for the etching of thin films. In wet-chemical
etching an acid fluid is used to dissolve the material which is not protected by a mask.
This results in an effective etching technique, but one has to deal with several inaccuracies,
for instance under-etching near the mask edge, in particular near sharp corners, and the
interaction between nearby cavities. There is, therefore, a need to better understand and
control the different phenomena in wet-chemical etching.

Mathematical models based on the fundamental principles of transport and reaction
phenomena are useful in predicting the shape of the object produced by the etching process
and provide insight into the important mechanisms. This can be done using analytical
techniques after some simplifying assumptions are made [4, 5], and also provides simple
design rules. For more complicated structures and systems numerical simulations are more
useful, but the simulation of wet-chemical etching is a non-trivial task. The numerical
method should be able to analyze the fluid flow and transport phenomena in complex
deforming geometries. In particular one has to deal with free boundaries, thin boundary
layers near the etching surface, and singularities near sharp corners, such as the mask
edge. Unstructured hp-discontinuous Galerkin (DG) finite element methods, delivering
high-order accuracy and the flexibility to deal with complex deforming geometries, satisfy
these requirements. In this paper we will apply a new space-time discontinuous Galerkin
finite element method for convection-diffusion problems, which we derived in [8, 9], to the
simulation of the etching of small structures.

The space-time DG method has as key feature that time is treated as an extra di-
mension which makes the method particularly useful for problems with time-dependent
flow domains. Since the main features of the space-time DG method are discussed and
analyzed in detail in [8, 9] (see also [1, 2]), we will focus in this paper on the application
of this technique to etching, which is demonstrated with the etching of a slit. Special
attention will be given to problems caused by the moving and deforming flow domain
boundaries and the computation of the initial solution.

The organization of this paper is as follows. In Section 2 we state the physical problem
and give the equations that govern the transport problems in wet-chemical etching and the
movement of the cavity boundary. In Section 3 we discuss the geometry of the space-time
domain and we briefly summarize the space-time DG formulation for the convection-
diffusion equation and the moving boundary equation in Section 4. The technique to
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adapt the computational mesh is discussed in Section 5. We also discuss the benefits of
our new mesh adaptation approach compared to other techniques for similar applications.
Finally, in Section 6 we discuss numerical results for the etching of a slit. We consider two
cases, where the etching process is either diffusion-controlled or a convection-dominated.
Some concluding remarks are made in Section 7.

2 THE PHYSICAL PROBLEM AND TRANSPORT EQUATIONS
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Figure 1: Illustration of etching process.

An illustration of the etching process under consideration is shown in Fig. 1. Assuming
that the length W is large compared to the half width of the cavity L, we can consider
the etching process of a slit to be a two-space dimensional problem, as we will do in this
paper, see Fig. 2.
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Γ Γ
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fluid
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Figure 2: Flow domain of a slit.

A solid film, partially protected by a mask, is placed in an acid fluid which flows past
the film. The acid fluid contains an etchant which reacts with the film, but is inert against
the mask. Here we assume that only one species in the fluid is important in the etching
process. The etchant is transported by convection and diffusion to the film surface where
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it reacts, thereby dissolving the unprotected part of the film. As etching proceeds, the
shape of the cavity evolves with time according to the etch rate distribution along the
cavity, which depends on the concentration of the etchant inside the flow domain.

We introduce the following characteristic quantities: the length scale L, concentration
scale ci (inflow etchant concentration), and time scale L2/D, with D the diffusion coeffi-
cient. The transport of the concentration c of the etchant in scaled variables is assumed
to be governed by a convection-diffusion equation

∂c

∂t
+ u · ∇c −∇2c = 0, in Ω(t) × (0, T ), (1)

where we assume that u is a prescribed velocity field. The value of velocity u is related
to the Péclet number Pe, which is defined as

Pe =
ucL

D
,

with uc a characteristic fluid velocity, e.g. the maximum of |u| in the domain Ω(t).
The magnitude of the Péclet number controls the type of process: for small values of
Pe the process is diffusion-controlled, for large Pe the process is convection-dominated.
The variable T is the final time of the process. The flow domain is bounded by the
moving boundary Γ1, the mask Γ2, and the far field boundaries Γ3, Γ4, Γ5. The above
equation is accompanied by the initial condition c = c0 and suitable boundary conditions
at ΓD and ΓM , related to Dirichlet and mixed boundary conditions, respectively. At these
boundaries, we define the following conditions

c = gD on ΓD, and ∇c · n̄ + αc = gM on ΓM , (2)

where gD, gM are given functions and n̄ is the outward normal vector to Ω(t). The
parameter α is a non-negative number and the value of this parameter at each boundary
depends on the physics. For example for an outflow boundary we have α = 0, whereas at
the etching surface (Γ1) it is related to speed of the dissolution process of the solid, and
is referred to as the Sherwood number Sh, which is defined as

Sh =
k L

D
,

where k is the reaction constant of dissolution process. For small values of Sh the process
at the boundary is kinetically-controlled, for large Sh the process is reaction-controlled.
In this paper, we will consider different magnitudes of Sh.

Whether the condition on each boundary Γi, i ∈ {1, . . . , 5} is Dirichlet or mixed,
depends on the application. We give more details on these conditions for each application
separately in Sec. 6. The velocity v of the moving cavity boundary Γ1 in the direction of
the outward normal is described by

vn = −β−1∇c · n̄, (3)

with β a dimensionless material constant. Values of β for different materials can be found,
e.g. in [5].
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3 GEOMETRY OF THE SPACE-TIME DOMAIN

We consider a computational domain directly in space and time, denoted as E ⊂ R
3.

Let us consider the time interval I = (0, T ), partitioned by an ordered series of time levels
0 = t0 < t1 < . . . < tNt

= T . Denoting the nth time interval In = (tn, tn+1), we have
I = ∪Nt−1

n=0 In. The domain E is divided into Nt space-time slabs En = E ∩ In (Fig. 3a).
Each space-time slab En is bounded by Ωn, Ωn+1, and Qn = ∂En \ (Ωn ∪Ωn+1), where Ωn

and Ωn+1 are the approximations to the domain Ω(t) at time tn and tn+1, respectively.

n
j

(b)(a)

K
j
n

K n

(c)

E nIn

Ω n

Ω
K

n+1

K
n+1
j

t

x

j E n

Figure 3: Illustration of the space-time domain for one space dimension. (a) Space-time domain. (b)
Space-time element. (c) Sets of faces. Internal faces Sn

I
(dashed line) and boundary faces Sn

B
(solid line).

For the nth space time slab En, let the domains Ωn and Ωn+1 be subdivided into
Nn spatial elements Kn

j = Kj(tn) and Kn+1
j = Kj(tn+1), respectively. Each space-time

element Kn
j is then obtained by connecting Kn

j and Kn+1
j using linear interpolation in time

(Fig. 3b). The element boundary ∂Kn
j is defined as a union of Kj(t

+
n ) = limε↓0 Kj(tn + ε),

Kj(t
−
n+1) = limε↓0 Kj(tn+1 − ε), and Qn

j = ∂Kn
j \ (Kj(t

+
n ) ∪ Kj(t

−
n+1)).

We denote with Sn the set of all faces in the space-time slab E n (see Fig. 3c for an
illustration). The set Sn

I is the set of all internal faces, where each internal face is shared
by two elements. At the slab boundary Qn, we have the set of boundary faces Sn

B. This
set is the union of the sets Sn

D and Sn
M , which are related to the Dirichlet and mixed

boundary conditions, respectively.

4 DG FORMULATION

In this section, we summarize the space-time DG method. More details on this method
can be found in [8] and [9]. First, we present the space-time DG method for the convection-
diffusion equation (1), then we discuss the time DG method for the moving boundary
equation (3).
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4.1 Space-time DG method for convection-diffusion equation

We consider a tesselation Th of space-time elements K. Each element K is related to
the reference element K̂ = (−1, 1)3 using an isoparametric mapping Gn

j : K̂ → Kn
j . The

finite element space then is defined as

Vh := {u ∈ L2(E ) : u|K ◦ Gn
j ∈ Qk(K̂)}, (4)

with Qk(K̂) the set of all tensor-product polynomials on K̂ of degree k ≥ 1 in each
coordinate direction. We also introduce an auxiliary finite element space Σh, defined as

Σh := {τ ∈ L2(E )2 : τ |K ◦ Gn
j ∈ Qk(K̂)2}.

Note that the finite element spaces Vh and Σh do not impose any continuity across element
faces, both in space and time. The unit outward space-time normal vector at the element
boundary ∂Kn

j is denoted with n. This normal vector can be written as n = (n0, n̄), with
n0 ∈ R the temporal component of the normal vector and n̄ ∈ R

2 the spatial component
of the normal vector. Following the analysis in [10], the temporal component of the
normal vector n0 at the element boundaries Kj(t

+
n ) and Kj(t

−
n+1) is equal to −1 and 1,

respectively, while the spatial component n̄ at those element boundaries vanishes. At the
faces S ∈ Qn

j the space-time normal vector n is equal to

n = (n0, n̄) = (−ν · n̄, n̄),

with ν ∈ R
2 the velocity of the point where the normal vector is evaluated [10, 11].

In order to deal with the discontinuities at the element boundary of functions in Vh

and Σh, we introduce the average {{·}} and jump [[·]] operators on each face Sn. Using the
notations vi := v|Ki

, τi := τ |Ki
, and n̄i := n̄|Ki

, the average operator for τ ∈ Σh and the
jump operator for v ∈ Vh are defined as

{{τ}} = (τi + τj)/2, on Sn ∈ Sn
I ,

{{τ}} = τ, on Sn ∈ Sn
B,

[[v]] = vin̄i + vjn̄j, on Sn ∈ Sn
I ,

[[v]] = v n̄, on Sn ∈ Sn
B,

with Sn ∈ Sn
I a face shared by elements Ki and Kj. We also introduce the local lifting

operators r and rgD
[8] as follows

Nn
∑

j=1

∫

Kn
j

r(φ) · qdK = −

∫

Sn

φ · {{q}}dS, on Sn ∈ Sn
I ∪ Sn

D, (5)

Nn
∑

j=1

∫

Kn
j

rgD
(φ) · qdK =

N
∑

j=1

∫

Kn
j

r(φ) · qdK +

∫

Sn

gDn̄ · qdS, on Sn ∈ Sn
D, (6)

for any φ, q ∈ Σh. Note that the support of operators r and rgD
for Sn ∈ Sn

I is contained
in the two elements that share the face Sn.
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Denoting with ch ∈ Vh an approximation to c, the space-time DG method for the
convection-diffusion equation (1) is formulated as follows: Within each space-time slab
En, find a ch ∈ Vh such that the following holds for all v ∈ Vh:

Nn
∑

j=1

∫

Kn
j

(

−
∂v

∂t
ch + ∇v ·

(

∇ch − uch

)

)

dK

+
Nn
∑

j=1

∫

Kj(t
−

n+1
)

v chdK −
Nn
∑

j=1

∫

Kj(t
+
n )

v c?
hdK

+
∑

Sn∈Sn
I

∫

Sn

(

− {{∇v}} · [[ch]] + [[v]] ·
(

− {{∇ch}} − η0{{r([[ch]])}} + (u − ν) H(ci
h, c

j
h)

)

)

dS

+
∑

Sn∈Sn
D

∫

Sn

(

∇v · n̄(gD − ch) + vn̄ ·
(

−∇ch − η0rgD
([[c]]) + (u − ν) H(ch, gD)

)

)

dS

+
∑

Sn∈Sn
M

∫

Sn

(

v(αch − gM) + vn̄ · (u − ν) ch

)

dS = 0. (7)

The first term in (7) is the same as when we use a standard Galerkin finite element
method. The other terms are added because of the discontinuities in the basis functions
across element faces; the terms in the second line are due to discontinuities in time, the
terms in the third and fourth line result from the discontinuities in space. The notation
c?
h refers to the function ch in the previous space-time slab E n−1 evaluated at Kj(t

−
n ).

The functions ci
h, cj

h refer to ch in the elements Ki and Kj evaluated at their common face
Sn ∈ Sn

I . The notation H is used to denote a standard upwind flux. The parameter η0 is
chosen η0 > 6 for stability reasons, see [8] for details.

4.2 Time DG method for the moving boundary equation

Let us consider the time interval I = (0, T ) = ∪Nt−1
n=0 In with In the nth time interval

In = (tn, tn+1). We assume that each interval In is the image of a reference element
Î = (−1, 1) using a linear mapping Ft. Denoting the position of a point at the boundary
as s(t) = (x, y)T , with coordinates x, y at time t, then the movement of the boundary
can be written as

ds(t)

dt
= −β−1(∇c · n̄)n̄. (8)

Each component of s(t) in the time interval In is approximated with functions in the
finite element space Θh, which is defined as

Θh = {w ∈ L2(I) : w|I ◦ Ft ∈ Pk(Î)}, (9)

7



J.J. Sudirham, R.M.J. van Damme and J.J.W. van der Vegt

with Pk the set of polynomials of degree k ≥ 1. The trace of functions w ∈ Θh at the
boundary of the time interval is defined as

w(t±) = lim
ε→0

w(t ± ε).

Denoting sh as an approximation to s in Θh, the time DG method for (8) is defined as
follows: Within each time interval In, find sh ∈ Θh such that the following formulation
holds for all w ∈ Θh:

w(t−n+1)sh(t
−
n+1) − w(t+n )sh(t

−
n ) −

∫

In

dw

dt
shdt = −β−1

∫

In

w(∇c∗h · n̄)n̄dt, (10)

wiht the function c∗h ∈ Vh the same as in (7).

5 MESH ADAPTATION

The governing equations (1) and (3) are coupled, which would require that they are
solved simultanously. Since this increases the complexity of the simulation, in many
references, e.g. [6, 7, 12], these equations are solved decoupled, which results in the
following algorithm. In each time step, first the concentration field c(tn+1) at time tn+1 is
calculated by solving the convection-diffusion equation (1) in the domain at t = tn. Then
c(tn+1) is used in (3) to evaluate the new position of the cavity boundary. After moving
the boundary, the value of c(tn+1) has to be interpolated to the new position. This can
lead to a significant error in the numerical approximation. Especially in the beginning of
the etching simulation, when the cavity boundary is flat and moves downwards and under
the mask at t1 (Fig. 4).

mask maskt = 0

t = t1

Figure 4: Time evolution of moving boundary in the beginning of etching process.

Using space-time elements, we can avoid this interpolation process. Our algorithm to
handle the initial mesh works as follows. At t = 0 we divide the boundary on the slit
into space elements K0

j . Even though their coordinates in space at t = 0 are the same,
these elements relate to different space-time elements (Fig. 5a). We also define an initial
mesh at t = t1. This computational domain is divided into elements K1

j (Fig. 5b). The
space-time elements K0

j are constructed by connecting the elements K0
j and K1

j , see Fig.
5c. With this construction we can deal with the degenerated space elements at t = 0,
since the space-time elements have non-zero volume, and the zero volume of the space
elements K0

j causes no difficulties in a space-time DG discretization.
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t 1

t

x
y

(c)(b)

(a)

x

x

y

y

t = 0

t = t
1 t = 0

K K K0 0 0
1 2 3

K

K

K

1

2

3
1

1

1

K
K

K
1

0

0

2

3
0

Figure 5: Illustration of the construction of initial elements. (a) Elements at t = 0. (b) Elements at
t = t1. (c) Construction of space-time elements in I0.

The actual coordinates of the space elements K1
j at t = t1 are obtained by solving the

non-linear algebraic equations in the space-time discretization. Since the non-linearity
originates from the unknown position of the domain boundary we perform an iteration
procedure until convergence is achieved in both the concentration ch and the boundary
position. This process does not require an interpolation of ch and is fully conservative.
We only need to find a reasonable initial guess for the shape of the cavity at the first time
level t = t1. One option is to use the solution of the interface position δ of a one-space
dimensional mathematical model for an etching process, see [5], as the initial shape of
cavity at t = t1 (see Fig. 6):

δ = 2γ(D t1)
1/2,

where the value of γ is a known function of the parameter β, see [5]. The iteration
procedure will change this shape to the actual (numerical) shape.

δ δ

δ δ
slit

δ

t = t 1

Figure 6: Initial guess of cavity shape at t = t1.

6 NUMERICAL RESULTS

In this section we investigate two model problems: wet-chemical etching of a slit when
there is no fluid flow (pure diffusion) and the effect of fluid flow on the etching process
(convection-diffusion). The value of the parameter β in (3) for the etching system is
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typically large [5]. We take a value β = 100 for all simulations discussed in this paper,
which is the smallest value for some typical etching system tabulated in [5]. Here we only
present the numerical results for the shape of the cavity during time evolution as this is
the primary focus of interest in real applications.

6.1 Pure diffusion wet-chemical etching process

First, we consider the model problem when there is no fluid flow and the diffusion
process controls the etching. We assume that the flow domain is already filled with
etchant, hence initially the etchant concentration is equal to the inflow concentration.
On the far field boundaries Γ3, Γ4, Γ5 (see Fig. 2) the concentration is kept equal to the
initial concentration. It is assumed that the fluid can not flow through the mask Γ2. The
boundary and initial conditions taken from [12] are:

0 0.5 1 1.5
-1

-0.5

0

t = 50

x

t = 150

t = 25

t = 100

t = 10

t = 200

slit

sy
m

m
et

ry
lin

e

mask
y

Figure 7: Shape of cavity during time evolution for pure diffusion process. Etching parameters: Sh =
1000, β = 100.

∇c · n̄ = −Shc on Γ1,

vn = −β−1∇c · n̄ on Γ1,

∇c · n̄ = 0 on Γ2,

c = 1 on Γ3, Γ4, Γ5,

c = 1 in Ω at t = 0.
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First, we choose the Sherwood number Sh = 1000 as an example of the etching process
when the surface reaction is very fast (Sh → ∞). The shape of the cavity surface resulting
from the simulation is shown in Fig. 7.

The figure shows how the shape of the cavity is changing in time. Since the problem is
symmetric with respect to the x axis, the figure only shows half of the shape. Because of
the fast surface reaction, in the early time of etching process, a bulge is formed near the
corner of the mask. Later, when the flow domain under the mask is large enough, this
bulge vanishes, i.e. the final shape becomes convex. This phenomenon is described in [4],
and confirms our simulation results.
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t = 10
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ry
lin

e

mask
y

Figure 8: Comparison between numerical results (solid line) and asymptotic solution (� symbol) at
T = 10 with parameter Sh = 1000, β = 100.

For the simulation with fixed far field boundaries Γ3, Γ4, Γ5, as used for instance in
[12], the boundary condition at these boundaries has to be adapted at large time. An
asymptotic approximation of the concentration, derived in [4], is used in [12] to prescribe
the far field boundary condition at large time. Using the time-dependent domain, we
can avoid the changing of the boundary condition. Instead, we move the position of the
far field boundary further away during the simulation to account for the changes in the
diffusion field to allow a fixed prescribed concentration at these boundaries. A comparison
between the simulation and the asymptotic solution [4] is shown in Fig. 8. The figure
shows good agreement between the numerical result and the asymptotic approximation.

Next, we perform a simulation for the Sherwood number Sh = 1, which is an example
when the surface reaction proceeds slowly compared to the transport of the etchant. Here
the kinetics controls the transport process and the concentration is assumed to be the
same everywhere. For small values of the Sherwood number, the bulge phenomenon is
less pronounced and the moving boundary moves slower than for large values of Sh (see
Fig. 9).
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Figure 9: Shape of cavity during time evolution for pure diffusion process. Etching parameters: Sh =
1, β = 100.

6.2 Wet chemical etching process with a prescribed fluid velocity field

In this section we consider a model problem when there is fluid flow coming into the
domain, see Fig. 10 for a schematic sketch of the flow domain. The boundary and initial
conditions for this model are similar to the model in [7]:

∇c · n̄ = −Shc on Γ1,

vn = −β−1∇c · n̄ on Γ1,

∇c · n̄ = 0 on Γ2, Γ4, Γ5,

c = 1 on Γ3,

c = 1 in Ω at t = 0.

Instead of solving the Navier-Stokes equations for fluid velocity u as in [6], we prescribe
the velocity field u with functions that resemble the behaviour of the fluid flow in the
domain. First, we assume that the velocity u = (ux, uy)

T has a following profile:

{

ux = ζy, uy = 0, y > 0, ζ > 0

ux = 0, uy = 0, y ≤ 0,
(11)

hence we assume that the velocity field only has nonzero values in the region above the
mask. We realize that this is a rough approximation, but we will refine this choice later.
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Figure 10: Flow domain of a slit with prescribed flow field u.

Simple scaling arguments show that ζ is propotional to

ζ = Pe
D

L2
, (12)

with D the diffusion coefficient and L the length scale. In a typical wet-chemical etching
process, the diffusion coefficient is of the order 10−9 and the length scale of the order 10−5.
Hence, we assume that the value of ζ is of the order 10 Pe.

We perform the numerical simulation for a Péclet number Pe = 100 and a Sherwood
number Sh = 1000. The resulting shape of the cavity is shown in Fig. 11. We can clearly
see the non-symmetric evolution of the shape due to the fluid flow. As the flow comes
from the left, the concentration of the etchant is higher on the left side, compared to the
right side. Meanwhile, due to the fast reaction at the moving surface, the concentration
along this surface is equal to zero. Hence the gradient of the concentration on the left
side of the cavity is higher than on the right side and, since the movement of the cavity
boundary depends linearly on the magnitude of the gradient of the concentration at the
boundary, the boundary on the left side moves(etches) faster than on the right side. For
small times this is indeed confirmed by the numerical simulations in, e.g. [3, 6].

For longer times, however, it is known [3] that the non-symmetry becomes of a different
character: the right side becomes deeper and our approximation does not capture that.
Of course this can be understood physically, because for longer times there is a flow from
left to right within the cavity which effectively transports the echant material to the right,
and as a consequence starts to speed up the etching process in the right part of the cavity.

In order to adopt this behaviour of the fluid flow, we apply a refined (but still very
simple) approximation of the velocity field u. We define the velocity field as being non-zero
above the mask, but we now extend thw velocity field into the cavity. This is accomplished
by assuming that the streamline at Γ2 moves down from the left mask edge point A to
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Figure 11: Shape of cavity during time evolution. Fluid flows from the left with nonzero velocity u on
the region above the mask. Etching parameters: Sh = 1000, β = 100, Pe = 100.

the point B at the middle of the cavity boundary and up to right mask edge C (see Fig.
12). We assume that the velocity has a linear profile in the vertical direction and matches
the boundary value at Γ4.

etching surface

solid film

Γ

Γ

fluid

1

4

Γ3
Γ

5

flow u

ΓΓ2 2

Figure 12: Fluid velocity u profile above the mask and into the cavity.

The result of this simulation is shown in Fig. 13. Qualitatively this behaviour is very
good compared to numerical solutions which also involve a full simulation of the Navier-
Stokes equations, e.g. [6, 7] (of course we cannot expect quantitive agreement with such
models). It does show, however, that the space-time DG method is quite capable of
giving reliable results for convection-diffusion problems simulating wet-chemical etching
processes, including the effect of transport and fluid flow on the shape evolution of the
moving boundary.
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Figure 13: Shape of cavity during time evolution. Fluid flows from the left on the region above the mask
and into the cavity. Etching parameters: Sh = 1000, β = 100, Pe = 100.

7 CONCLUSIONS

In this paper we showed applications of the space-time discontinuous Galerkin method
to simulations of wet-chemical etching. The DG method has a local discretization and is
easily combined with hp adaptation, which is needed for this application, since we have
to deal with irregular meshes, solid-etchant interface, and incompatible initial data.

Inclusion of the time variable into the complete discrezation is beneficial as we have
to deal with time-dependent domains. In this way, we have no difficulties with deforming
and even degenerated spatial elements. An additional benefit of the space-time DG dis-
cretization in wet-chemical etching is related to the generation of the initial shape of the
cavity at the start of the etching process. Using a simple but reasonable initial shape,
an accurate numerical shape is obtained after several iterations and a complicated inter-
polation procedure can be avoided. The DG method has, however, some disadvantages
compared to a standard/continuous Galerkin discretization. The formulation of the DG
method is more complex than for a continuous elements and more integrations on the
element boundaries are needed.

The space-time DG method is applied to different etching problems, where either the
diffusion or the convection dominates the process. When the etching process is diffusion-
controlled, the numerical shape of the cavity resulting from the space-time DG method
give good agreement with analytical studies. We also find the typical asymmetric etching
cavities for convection-dominated processes, even though we only use a simple model
for the fluid velocity field, instead of solving the full Navier-Stokes equations. In order
obtain also a good quantitative agreement for convection-dominated wet-chemical etching
processes, we have to include the Navier-Stokes equations for the fluid flow into the
mathematical model, which is presently being carrried out.
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